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LONG-TERM GOALS  
  
There is a critical need for reliably and rapidly detecting, identifying, and tracking submerged low 
observable targets in port environments, which would allow for rapid and effective neutralization of 
such threats. Without this capability, personnel, naval platforms and targets of opportunity are exposed 
to a cheap kill by an opportunistic threat.  The goal of this effort is to exploit for the first time detailed 
active and passive acoustic signature information associated with harbor threats together with 
advanced Bayesian classifier techniques. In this effort the intent is to leverage the highly successful 
science and technology carried out in the broadband mine identification program [Ref. 1 and EOY 
reports for Award Numbers: N0001406WX20052 and N0001406WX20679]. 
 
OBJECTIVES  
  
The objective of the Harbor Threat Detection, Classification, and Identification Program is to exploit 
passive and active acoustic signal information associated with submerged threats in harbors and ports 
in order to monitor their presence in real time.  There is no known capability for reliably detecting, 
identifying, and tracking low observable targets in such environments, particularly at ranges ~ 1km.  
Submerged threats include a variety of both man-made and human targets, and this project emphasizes 
both swimmer and non-swimmer threats. The effort will lead to a significantly improved detection and 
identification capability and to demonstration through experimentation and simulation. 
 
APPROACH  
  
The acoustic work is broken into the following two components. The first involves comprehensive, 
highly controlled broadband, multi-aspect measurements of swimmer- related acoustic signals (both 
passively generated and in response to active acoustic insonification).   The second area involves the 
development of suitable signal processing techniques including both tracking and identification 
algorithms that can operate effectively on the environmentally corrupted threat target signals. These 
include, among others, those based on kernel matching pursuits [1], relevance vector machines [2-5], 
and time reversal mirrors recently developed at NRL [6,7]. The studies include the full range of 
broadband frequencies. The spectrum is limited at the extremes due to practical deployment issues, but 
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the frequency range is sufficiently broad to capitalize on potential discoveries of target/false target 
signal features useful for identification.  
 
The two task areas are detailed as follows: 
 
Task 1: Database Generation: NRL will provide measurements and analysis of the broadband, multi-
aspect signatures from a number of additional threats using its Laboratory for Structural Acoustics 
(Fig. 1).  The priority ranking of threats to be studied is (1) diver with commercial rebreathers, (2) 
diver with diver assisted propulsors, and (3) small UUVs.   The measurement band is (1 – 200 kHz), 
and the angular resolution of the diver rotation is 5 degrees (Fig. 2).  Note that the system resolution is 
much higher (i.e. 1/10,000 of a degree), and the larger 5 degree resolution associated with diver 
measurements is due to the practical issue of dealing with a human target.  The data bases will be 
examined with a view toward exploiting the structural acoustic features associated with the broadband 
diver and other threat target returns for potential classification. 
 
 

Fig. 2 The acoustic range used in the NRL 
laboratory measurements wherein both radiated 
noise and broadband active measurements are 

taken.  For the active measurements, a 
horizontally oriented line array 

 is used as a source. 

Fig. 1 The Large Acoustic Tank at 
NRL used to acquire the broadband 
active and passive signature data. 

 
 
Task 2:  Detection, Tracking and Identification: NRL and SIG will evaluate the application to the 
diver detection problem of advanced techniques developed for the underwater mine problem.   This 
task will focus on both existing threat databases generated with conventional harbor protection sonars 
as well as the new data acquired in Task 1.  The intent is to apply highly successful techniques 
developed for the ONR (Robert Manning) Low Frequency Broadband Mine Program (LFBB) to the 
detection, tracking, and identification phases of the diver related problem.   
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WORK COMPLETED  
  

In Task 1 for FY07, NRL successfully extended the laboratory database to include additional 
rebreather types and conditions, adding to the database originating in FY06.  The FY06/07 active 
acoustic activities focused on the lower end of the band (0.7 – 35 kHz), and the FY08 laboratory active 
activities will now include the higher end (20 – 150 kHz).  NRL’s overall database is now substantial 
including broadband data on conventional scuba systems, the MK16, the Optima, and the Inspiration 
rebreathers.  NRL has also collected significant data on passive signatures.  Below is a summary: 
 
 Passive Signature Data (300 Hz – 200 kHz): 
 1)  M-16 Rebreather   
 2)  Optima Rebreather 
 3)  Inspiration Rebreather 
 4)  Conventional Scuba 
 5)  Diver Assisited Propulsor 
 
 Active signature Data  (0.7 – 35 kHz): 
 1)  M-16 Rebreather 
 2)  Optima Rebreather 
 3)  Inspiration Rebreather 
 4)  Conventional Scuba 
 5)  Diver Assisited Propulsor 
 6)  21 inch BPAUV Class Autonomous Underwater Vehicle (AUV) 
 
 Active Signature Data  (20 kHz – 150 kHz): 
 1)  M-16 Rebreather 
 2)  Optima Rebreather 
            3)  Inspiration Rebreather 
 
In Task 2, two areas have been addressed for processing the acoustic-scattering data from the diver and 
surrounding clutter. First, state-of-the-art tracking algorithms have been developed based on the 
particle filter. Unlike the Kalman filter which assumes a Gaussian distribution and linear tracks, the 
particle filter is applicable to general motion models (e.g., for the diver) and for a non-Gaussian 
posterior density function on the target position. Moreover, the particle filter is applicable to arbitrary 
feature vectors, where here we are employing the features extracted by ARL-UT.  Note that as a 
consequence, the particle-filter tracking software is now directly transferable to ARL-UT upon request. 
The algorithm has been tested on the measured data from ARL-UT, and we have demonstrated that the 
particle filter accurately sustains the actual diver track, while for false targets (clutter) tracks are 
started but not sustained.  Second, we have begun investigating the hidden Markov model (HMM), a 
natural statistical algorithm for modeling and classifying time-evolving data. 
 
RESULTS 
 
The target scattering data has been analyzed from the perspective of potential exploitation of the target 
signature response to improve detection and classification at long range (700m to 1 km).  The 
scattering data collected thus far generally show that the structural acoustic features associated with 
diver scattering cross-sections can be used to help distinguish the individual systems (divers with 
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scuba, MK-16, Optima, Inspiration, etc.) from one another. This is an important result in that we 
believe this to be more difficult than the ultimate requirement of separating the threat signals from the 
clutter background existing in the various harbors. What is very promising thus far is not only that the 
laboratory data show robust structural acoustic features, but also that these features should be 
exploitable by either current operational systems or by future systems designed to exploit them.   
 
An example of the rich structural acoustic features associated broadband low frequency acoustic 
scattering from diver equipment is shown in Fig. 3.  The axes of the mosaic are frequency (ordinate) 
and target aspect (abscissa).  Target Strength levels are displayed with the indicated color scale.  
Because this particular piece of diver equipment (scuba air bottle) is a relatively simple cylindrical 
shell, this target produces a broad angular elastic TS response below ~ 7 kHz that is directly related to 
the vibrational modes known to exist 
for a simple, fluid-loaded shell.  
Above approximately 10 kHz, the re-
radiation from membrane waves 
excited in the tank shell is observed 
over an angular sector of 
approximately ± 30°  about beam 
(90°) aspect.  Similarly, re-radiation 
from supersonic flexural waves also 
excited in the shell is observed near 
bow (0°) incidence (the valve end of 
the bottle) above approximately 15 
kHz.  Above 10 kHz, the geometric, 
specular responses from the beam 
(90°) and flat-end stern (180°) aspects 
produce the very large, persistent, 
standout features clearly evident in the 
figure.  Further understanding of the 
detail in the response at beam and end-
on incidence can be obtained from the 
more detailed analysis in ref. [8]. 
 
We have successfully applied the 
tracking algorithm based on the particle filter to the ARL-UT data. The measurement configuration is 
shown in Fig. 4 and the results for the diver path depicted in the figure are shown in Fig. 5.  The 
software used in this demonstration is available for transition upon request (it directly takes as input 
ARL-UT generated features, and therefore is applicable to that system). 

Fig. 3  A mosaic plot of the measured monostatic TS 
vs frequency and angle for the scuba  bottle alone 

over a full 360° in 1° increments. 

 
The mechanics of the particle filter may be summarized as follows. A “starter” distribution is assumed 
for the location of the target; this distribution need not be Gaussian, and it has only the requirement 
that sampling from it be simple. Using the (general) motion model for the target of interest together 
with the observed data, the points sampled from the distribution are weighted to reflect how well they 
match the data and model, with the distribution of weighted particles (distributed spatially) defining an 
approximate distribution for the target position. As new data come in, some particles are pruned, as 
they no longer match the data and target model, and new particles are spawned. As the data evolves, 
the particle filter yields a time evolving distribution of weighted points quantifying the statistical 
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representation for the target location. The 
“filtering” process occurs over time, with 
evolving data, as samples (particles) are 
added and subtracted with new 
observations. Since in practice we need to 
compute only a relatively small number 
of weighted particles and particles are 
added and pruned over time, the 
technique is computationally tractable.  

38 43 48 53 58 63 68 73 78 83 88
275

276

277

278

279

280

Ping Indices

B
ea

rin
g 

of
 th

e 
de

te
ct

ed
 ta

rg
et

Partcile Filter based Tracking of the Closed Circuit Run #2
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Fig. 5 Particle-filter estimated tracks (blue) and the 
estimated “truth” (red) based on characteristics of 
the test. Note that the particle filter estimates a full 
(time-evolving) distribution on the diver location, 
where here we plot the associated time-evolving 

maximum likelihood. 

 
As the second component of the work, 
SIG is currently moving beyond the idea 
of simply performing detection and 
tracking, and now investigating 
classification techniques. We are 
interested in developing statistical 
techniques appropriate for classifying 
time-evolving data. Toward this end we 
have begun investigating the hidden 
Markov model (HMM) for modeling and 
classifying time-evolving data. A key 

issue in developing HMM’s concerns selection of an appropriate number of states for the underlying 
Markov process. To address this problem in a statistically principled manner, we have employed a 
Dirichlet process (DP) framework [9]. The DP represents a setting whereby one need not set a priori 
the number of states characteristic of the 
data; rather, the inference framework 
provides a posterior distribution on the 
number of states. (Therefore, in this 
sense, there is not a single HMM 
learned, but rather an ensemble of 
HMMs.) We have demonstrated that this 
framework typically yields a far better 
fit to general acoustic scattering data [9] 
compared to conventional maximum-
likelihood-based HMMs with a fixed 
number of states. Two inference 
techniques have been considered: (i) 
Markov chain Monte Carlo (MCMC) 
sampling, which is a more-general form 
of the aforementioned particle filter; and 
(ii) variational Bayesian inference which 
is approximate but computational quite 
fast.  

Fig. 4 View of the measurement configuration, with 
tracking results shown in Fig. 5 for the 
particular diver path depicted here. 

 
We are now examining design of this 
class of HMMs for modeling divers and 
(separately) for modeling clutter. The 
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idea is that the available set of data for divers is limited, and it is unclear as to how representative these 
data are of the actual threat. However, there is a large quantity of variable, time-evolving clutter data, 
from which the HMM may be trained and time-evolved (as new data are observed). We are 
considering design of HMMs for clutter, and the goal is to demonstrate that the diver data yields 
signatures that have a low likelihood of being generated by such (clutter) HMM models. In this context 
the detection of a diver will be performed by sensing something that is anomalous with respect to 
typical observed data. The HMM may be learned and refined continuously, as the “typical” data 
changes with time, for example with changing weather and sea state. In this sense the algorithm is also 
less dependent on requiring a large set of training data for divers covering the full range of possible 
threats. 
 
IMPACT/APPLICATIONS  
  
Success will enable advanced detection and identification technology against covert terrorist 
swimmers and other asymmetric threats that constitute a serious problem and challenge to harbor/port 
security. 
  
RELATED PROJECTS  
 
This program is leveraging the following efforts: (1) Harbor Protection (NRL Base Effort) and (2) 
ONR funded efforts in Low Frequency Broadband Mine Identification (LFBB), Award Numbers: 
Award Numbers: N0001407WX20246, N0001407WX20058, N0001407WX20664, 
N0001407WX20953. 
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